Welcome to today's public webinar!

"Mapping future land-use and land cover patterns"

15 February 2024, 13:00-14:00 CET, online

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or EC-CINEA. Neither the European Union nor the granting authority can be held responsible for them.

Agenda –15 February 2024

13:00-13:05 Brief introduction of the Europe-LAND project

Franziska Wolf (Hamburg University of Applied Sciences, Germany - HAW)

13:05-13:20 Land use/Land cover modelling perspective to identify and manage climate change impacts and support biological diversity: forested areas, wetlands

Maris Klavins, Karina Stankevica and Janis Krumins (University of Latvia, Latvia - LU)

- **13:20-13:35 Modelling land use/land cover changes using CLUE-S. Applications in Romania** *Gheorghe Kucsicsa (Romanian Academy, Institute of Geography, Romania - IGAR)*
- 13:35-13:45 Database on existing LU/LC patterns and Database on LU/LC modelling tools current state and further development

Lucie Kupkova (Charles University, Czech Republic - CU)

13:45-13:50 Land use changes of wetlands from the perspective of stakeholders

Ingrida Krigere (Latvia's Peatland Association, Latvia)

13:50-14:00 Q&A and end of the webinar

15 February 2024, online

Speaker: Franziska Wolf, Hamburg University of Applied Sciences, Germany

"Introducing the Horizon Europe project "Towards Sustainable Land-use Strategies in the Context of Climate Change and Biodiversity Challenges in Europe"

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or EC-CINEA. Neither the European Union nor the granting authority can be held responsible for them.

- Consortium: 13 partners (12 countries, 8 cases), 2 Associates (FIN, LIT)
- Duration: 1 June 2023 til 31 May 2027

Main Objective:

to identify, develop, test and implement integrated tools to **improve the understanding of the factors behind land-use decisions** as well as the **stakeholders' awareness and engagement** in terms of climate change and biodiversity challenges across Europe.

This includes **increasing the knowledge base** on how such decision can be oriented towards the efficient and socially responsible pursuit of multiple policy objectives on various scales in order to **gain a national, regional and pan-European vision** that supports land-use strategies, climate change mitigation and adaptation, as well as biodiversity conservation.

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or EC-CINEA. Neither the European Union nor the granting authority can be held responsible for them.

Methodology

Tasks include:

 national-level analyses (e.g. harmonization of fragmented European data) - land use/land management surveys,

modelling of land-use changes
 (basis: CLUE model), complemeted
 by

- cross-cutting feature: 8 local cases (allowing for East-West comparison) as demonstrators and

- capacity-building (open access!)

- Management structure - Project management
- Data Management Plan - Monitoring & Evaluation

WP 2 Revealing agricultural land-use behaviour and its drivers in Europe

- Inventorise data - Establish typologies Analyse changes
 Focus on wetlands

WP 3 Assessing awareness behind land-use decisions

Policy assessment
 Living Lab Framework
 Engagement of stakeholders
 Analysis of drivers of change
 Online Workshops

WP 4 Mapping future landuse and land-cover patterns

 Assessment of modelling tools
 Harmonization of location factor and driving force data
 Analysis of future land-use patterns
 Development of indicators of transformation

WP 5 Supporting climate change mitigation and adaptation and biodiversity policy

 Analysis of telecoupling frameworks
 Development of a telecoupling framework with social component
 Comparative studies and implementation of the framework
 Modelling future land-use and change
 Supporting stakeholders' decision making

Case Studies

- Development and testing of the Toolbox - Land-use Scenario Exploration

- Technical capacity building seminars
 - Improving professional skills and expertise
 - Exploitation Plan

WP7 Information, communication, upscaling and capacity-building

Communication, Dissemination, Up-scaling and Exploitation Plan
 Project' branding, communication material and digital outreach

- Strategic Stakeholder Engagement - Dissemination in publications and events

Save-the-dates Upcoming project activities

- 14 Mar 2024 Europe-LAND's 5th public webinar on "Introducing the Europe-LAND Case Studies"
- 18 Apr 2024 Europe-LAND's 6th public webinar on "Exploring the potential of Telecoupling for improving European land management"
- 16 Apr 2024 for EU Research Projects + EU Policy Officers only: EU Science Policy dialogue (online)
- Meet our researchers at the following conferences:
 - 24-27 June 2024: 10th Nordic Geographers Meeting, Copenhagen, Denmark
 - 26-28 June 2024: IAMO Forum the functions of land in times of change, Halle, Germany
 - 24.-30 Aug 2024: 35th International Geographical Congress 2024, 24th to 30th August 2024 in Dublin, Ireland

All events are announced on the project website **www.europe-land.eu**

Thank you for your attention!

Team Hamburg

Prof Walter Leal, Franziska Wolf, Jasmin Röseler, Dominique da Silva

Hamburg University of Applied Sciences, Research and Transfer Centre "Sustainable Development and Climate Change Management", Ulmenliet 20, D-21033 Hamburg, Germany **Contact:** info@europe-land.eu

Project website: www.europe-land.eu

Join our LinkedIn Community at https://www.linkedin.com/company/europe-land/

<u>15 February 2024</u> Maris Klavins, Karina Stankevica, Janis Krumins University of Latvia

Land use/Land cover modelling perspective to identify/manage climate change impacts and support biological diversity: forested areas, wetlands

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect these of the European Union or EC-CINEA. Neither the European Union nor the granting authority can be held responsible for them.

Objective: To <u>undertake the mapping</u> of future expected land use, with a focus on **climate change** and **biodiversity** challenges, and by analysing the current situation and future trends

<u>Aim</u>: Assessment of land use and land cover (LU/LC) change spatial modelling tools and databases, considering impacts of climate change, mitigation potential and biodiversity

Aim: Gathering and harmonisation of location factors and driving force data and related transition role development LAND

Past LU/LC change (-2023)

CORINE, USGS Land Cover data base

Driving factors (DFs) of change

- <u>Environmental factors</u>: e.g., *topographic related-; climate related-indicators...*
- Demographic factors: e.g., population growth; population density; migration-related indicators... >
- <u>Economic factors</u>: e.g., *employees; livestock* breeding...
- <u>Accessibility</u>: e.g., distance to settlements; distance to towns; distance to roads...
- <u>Other</u>: e.g., policy regulation

assessing LU/LC pattern change for the main LU/LC categories:

- total amount of change
- annual rate of change
- linear trend of change

(binary) logistic parametric model (!)

→ assessing the effect of DFs on each LU/LC category to:

- estimate the influence: direct(+) / inverse(-)
- estimate the explanatory power: low / high
- to rank DFs

To estimate the contribution of determinant factors of LU/LC change <u>Aim</u> – to evaluate how the static and dynamic driving factors trigger LUC change and to provide scenarios to estimate the magnitude and location of LUC transitions, according to the specific environmental and socio-economic conditions in order to provide a better understanding of LUC trajectories and, therefore, to adopt appropriate land-use planning and strategies in relation to climate change and environmental policy; **a CLUE- S, TERRSET or other model approach of future expected changes, considering transitions towards sustainability, will be performed as case study**

<u>Aim</u> - define a set of standardized indicators of LU/LC transition for the purpose of future monitoring if the desirable trajectories are followed. Data source and methods to calculate these indicators will be stated, and the indicators will be published and offered to the EU authorities for the monitoring of land-use change and evaluation of its sustainability.

Development steps for LU/LC forecast model

- Data Sources: Diverse sources including remote sensing, GIS, field surveys, and climate data.
- Spatial Data Processing: Steps such as cleaning, integration, and standardization to ensure data quality.
- Mapping Existing Land Use: Classifying land cover types and identifying regions of interest for baseline modelling.

- Strict nature reserve wetland, Ramsar site, unique ecosystem, of importance for biodiversity protection from regional perspective
- **Highly vulnerable** to climate change impacts
- Human activities might have major consequences

Author: Julita Kluša

- 112 discontinuous urban fabric
- 211 non-irrigated arable land
- 231 pasture

243

- 242 complex cultivation pattern
 - land principally occupied
 - by agriculture

- 311 broad-leaved forest
- 312 coniferous forest
- 313 mixed forest
- 324 transitional woodland-shrub
- 412 peat bog
- 512 water body

Land Use Presistence

231 pasture

agriculture

313 mixed forest

512 water body

Land Cover Changes

1982 - 1991

Mixed Forests

1991 - 2023

A and A and

1982 - 1991

Transitional - Woodland Shrubs

0.40 0.50 0.60 0.70 0.80

Probability for the land cover change to non-irrigated arable land in next 40 years

0.40

0.50

0.60

0.70

- Database on modelling tools (open access generalized database) of main types of the modelling tools that can serve as an operational tool for users
- Focus: modelling tools related to LU/LC changes in agricultural land, wetlands and forests.
- Identification and if needed digitization of cartographical material of importance for characterization of LU/LC situation
- Inputs from project partners on socio-economic factors affecting future LU/LC change scenarious
- Climate change impacts, nature restoration needs as key factors at elaboration of LU/LC future change scenarious

Thank you for attention!

15 February 2024, online

Speaker: Gheorghe KUCSICSA & Mihaela SIMA, Institute of Geography of the Romanian Academy, Romania

Modeling land use/land cover changes using CLUE-S. Applications in Romania

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or EC-CINEA. Neither the European Union nor the granting authority can be held responsible for them.

1. CONTEXT

The LUC modeling: as an essential part of understanding the potential future developments. It helps in decision-making processes and allows for the assessment of the impacts of different policies or interventions on LUC patterns.

2. CLUEs model (the Conversion of Land Use and its Effects at Small regional extent)

CLUES: a model specifically developed for the spatially explicit simulation of LUC change, based on an empirical analysis of location suitability combined with the dynamic simulation of the competition and interactions between the spatio-temporal dynamics of LUC systems (Veldkamp and Fresco, 1996, Verburg et al., 1999; 2004; 2010).

conversion elasticity

conversion matrix

LAND USE/COVER SPECIFIC

CONVERSION SETTINGS

ROC (AUC)

The model requires four inputs:

1) LUC type-specific conversion settings, which indicate the conversion elasticity (0 = easy....1 = irreversible change) and the conversion matrix (LUC type can/cannot be converted into any other LUC);

2) **Spatial policies and restrictions**, which can restrict/limit LUC change in certain areas (e.g., land-use policies, environmental policies);

3) LUC demand (scenarios based on simple trend extrapolations or complex models); 4) Location characteristics (LUC suitability), determined as the relations between the LUC pattern and explanatory factors.

Webinar: "Mapping future land-use and land cover patterns – the Europe-LAND approach"

3. CLUEs model: applications for Romania

The potential future LUC pattern changes: CLC datasets + Biophysical & Socioeconomic factors Two scenarios computed based on the past LUC trend (1990-2000; 2000-2006) \rightarrow linearly extrapolated for the simulated period (<2050)

simulation = at regional level (NUTS 2)
the analysis = national scale + the major relief units

17 continuous + categorical explanatory factors

ndependent variables		6 5
Elevation	in m	
Slope declivity	in °	0 25 50 100 Km
Precipitation	annual average 1961-2015 (mm)	
Temperature	annual average 1961-2015 (°C)	
Relief fragmentation	in km/km ²	
Soil	total organic matter content in topsoil	
Population density	inh/km ²	
Population growth	‰	
mployees	no	
Inemployment rate	%	
arge livestock Units (LLU)	no	
Employments in tertiary sector	no	
Distance to nearest major wood	haff dhar	
exploitation / processing centres	Dutt = 1km	
Built/nonagricultural ratio	%	
Settlements density	ha/km²	
Distance to nearest major roads	county and national roads, European r	outes, motorway (buff = 1km)
Secondary roads density	communal, forestry and agricultural ro	ads (in km/km²)

Webinar: "Mapping future land-use and land cover patterns – the Europe-LAND approach"

3. CLUEs model: applications for Romania

The potential evolution of the main LUC change flows: an overall

assessment of Urbanization (URB), Intensification of agriculture (IA), Extensification of agriculture (EA), Agricultural land abandonment (ALAB), Afforestation (AFF) and Deforestation (DEF)

Urban built-up areas in 2006 built-up areas expansi in 2007-2050 growth (a) Taylor & Fr Springer Kucsicsa, Popovici Grigorescu, Kucsicsa et al., 2019 et al., 2019 Past and future land use/cover flows related to agricultural lands in Romania. An assessment using CLUE-s Model and **Changes related to** 0 30 60 120 Kr agricultural lands ha Eastern Carpathians (I) 1400000 Southern Carpathians (II) S1 1200000 Apuseni Mountains (III) Assessing the Potential Future Forest-Banat Mountains (IV) **Carpathian Journal of** 1000000 S2 The main LUC Subcarpathians (V) Cover Change in Romania, Predicted **Earth and Environmental** Banat and Crisana Hills (VI) 800000 Sciences Using a Scenario-Based Modelling Transvivanian Tableland (VII) change flows 600000 Moldavian Plateau (VIII) Getic Piedmont (IX) 400000 **ENVIRONMENTAI** Dobrogea Plateau (X) 200000 Romanian Plain (XI) أس م **MODELING &** Banat and Crisana Plain (XII) Danube Ddelta and Razim-Sinoie Lagoon Ccomplex (XIII) URB IA EA ALAB AFF DEF ASSESSMENT URF ha 300000 IA ha ΕA **Forest-cover** persistence simulated correctly 25000 500000 change (forest losses) simulated correctly 250000 20000-400000 change (forest gains) simulated correctly **dynamics** 1 - North-East 200000 persistence simulated as forest losses 2 - North-West 15000 300000 3 - Centre 4 - South-East forest gains simulated as forest losses 150000 forest losses simulated as forest persister 100000 5 - South Muntenia forest losses simulated as forest gains 6 - South-West Oltenia 5000 7 - West (b) 0--(b) V VI VII VIII IX X XI XII XIII Popovici, Kucsicsa observed forest persistence 12000 AFF DEF ALAB simulated forest persistence 30000 150000 180000 0000 et al., 2018 observed forest losses 25000 150000 -∎ S1 8000 120000 simulated forest losses 20000 120000 - **S**2 6000 90000 observed forest gains 15000 90000 4000 60000 simulated forest gains 10000 2000 30000 5000-30000 Kucsicsa, Popovici 5 6 VEVEVIE IX X XEXTEXT

Webinar: "Mapping future land-use and land cover patterns – the Europe-LAND approach"

Future land use/cover changes in Romania: regional simulations based on CLUE-S model and CORINE land cover database

LANDSCAPE

ECOLOGICAL

ENGINEERING

Modelling land use/cover change to assess future urban sprawl in Romania

Corine Land Cover database

et al., 2019

3. CLUEs model: applications for Romania

Estimation of Future Changes in Aboveground Forest Carbon Stock in Romania. A Prediction Based on Forest-Cover Pattern Scenario

Webinar: "Mapping future land-use and land cover patterns – the Europe-LAND approach"

4. What is next? LUC modelling in the context of EUROPE-LAND project (Case study: Romania)

Developing of the new scenarios: baseline & alternative scenarios / Identifying new driving factors

by including a more appropriate factors (statics & dynamics) for agricultural and afforested lands, and assuming a continuation of the recent trend of LUC change and current situation and trends of driving factors

adjusting specific factors from the baseline scenario or altering the recent trend of LUC change, by including climate scenarios + policies + Stakeholders knowledge & needs)

Possible questions addressed:

Q1 How LUC pattern may change in response to climate change impacts? Will the climate change have a significant impact on agriculture and forestry sectors? Which regions are the most vulnerable?

Q2 Could the better implementation of conservation policies lead to the increase of the afforested areas? What will happen outside the protected areas?

Q3 What are the potential consequences of LUC change for biodiversity?

Can the appropriate land use policies prevent agricultural land abandonment? **Q4**

Q5 How much the LUC pattern is related to agricultural land management, as documented

in IACS data (Integrated Administration and Control System)?

Q6 How does land fragmentation influence land use decisions?

Q7 How the urbanization trends influence the uptake of agricultural land? Q8?

Webinar: "Mapping future land-use and land cover patterns – the Europe-LAND approach"

4. What is next? LUC modelling in the context of EUROPE-LAND project (Case study: Romania)

Challenges to compute and understand alternative LUC scenarios

Ch1 to identify/propose a coherent and realistic set of changes that may affect LUC change in the future;

Ch2 to integrate the Policies + Stakeholders knowledge & needs into LUC modelling for alternative scenarios, in order to measure and understand the impacts of different interventions on LUC patterns. In the CLUEs model, we propose to integrate this information by altering quantitative information (LUC demand) and LUC type specific conversion settings, i.e., the conversion elasticity (easy to convert vs. irreversible change) + conversion matrix (which LUC class can/cannot be converted into other LUC class);

Ch3 to evaluate the strengths and weaknesses of alternative scenarios in capturing key drivers, processes, and outcomes of LUC pattern change;

Ch4 to understand the impact of the potential future LUC pattern change on agricultural lands and forest-cover (biodiversity) and to identify the potential vulnerabilities and the opportunities in the future;

Ch5 to identify and assess uncertainties in alternative scenario projections.

Conclusions

CLUEs = a dynamic model, suitable to simulate near-future changes in LUC pattern at high resolution;

- **CLUEs** = a tool to understand the processes that determine changes in the spatial pattern of LUC;
- **CLUEs** = is able to estimate the most likely location and amount of LUC pattern change in the future;
- **CLUEs** = allows to compute the scenarios by integrating static and dynamic factors of LUC change;
- **CLUEs** = allows to compute both baseline and alternative LUC pattern scenarios;

CLUEs = however, is a complex and time-consuming model, and the result of simulations strongly depends on the data quality, considered factors of change, the nature of the most important LUC conversions, and the model assumptions.

Webinar: "Mapping future land-use and land cover patterns – the Europe-LAND approach"

15 February 2024, online

Speaker: Lucie Kupková, Khalil Gholamnia, Ivan Bičík, Vít Jančák, Přemysl Štych, Markéta Potůčková

"Database on existing LU/LC patterns and Database on LU/LC modelling tools – current state and further development"

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or EC-CINEA. Neither the European Union nor the granting authority can be held responsible for them.

LU/LC datasets and dynamic spatial simulation models of LU/LC can serve as informative platforms and data sources for policy setting and decision-making processes on the use and management of land resources.

Stakeholders must have information about available modelling tools and LU/LC datasets.

The database and assessment of existing LU/LC layers/datasets can help stakeholders/decisionmakers to work efficiently with available LU/LC data sources.

Goals

To provide a list/database of:

- 1) Existing LU/LC layers/geodatabases in the EU
- 2) LU/LC spatial modelling tools

Anticipated results

Current LU/LC layers/geodatabases (e.g., Copernicus monitoring services, LULUCF, LUCAS, NATURA 2000, outputs from various LU/LC projects etc.) can be used by stakeholders for a comparative temporal evaluation of LU/LC change at regional, national and international levels and potentially (mainly by scientists) for the evaluation of climate change and its impact for mitigation and biodiversity preservation.

The database of LU/LC spatial modelling tools will enable the stakeholders/scientists/decision-makers to select the appropriate tool according to the modelling requirements, based on parameters that will be listed/described.

3 products/outputs for modelling tools:

- Database of modelling tools based on papers dealing with modelling tools
 - Sorted by:

a) type of used modelling approach/tool (CA models, CLUE-S models, LCM models, IAM models... etc.)

b) special interest land use/cover categories - forests, wetlands, croplands

c) geographical interest – Europe and particular European countries (mainly countries of project partners and countries with tradition in modelling practice)

- Stored information (based on papers that use the tool) name of modelling tool, topic, year of
 publication, authors, Access/link, Used modelling method, scale, LCLU categories, inputs to
 modelling, outputs, published case studies, area of interest, continent, references
- Cards of modelling tools
- Success stories for modelling toola

 ... Database, Cards and Success stories will be interconnected and published (on the project webpage
 or on a web connected to the project web page)

А	В	С	D		E	F	G	н	1	J	К	L	М	Ν	
L- Name of modelling tool/ oftware	1-year	topic	Author/Pro	vider	Access (link)	free of charge or not (Y/N)	Type of model (Table 1)	Used modelling method/s	scale (local/regio nal/global - L/R/G)	focus - types of LCLU categories	inputs	outputs	published case studies (area, purpose, scale, categories, methods)	continent	references
A-Markov and Random Forest	2023	Modelling of land	Asif, M., Ka	zmi, J. H	https://www.ta	ar Y	Statistical models	CA-Markov and	d R	Land use and land cover ch	Satellites images of the La	inds to predict the land use map	or deserts in Punjab, Pakis	t AS	Asif, M., Kazmi, J. H., Tariq, A., Zhao, N., Gu
3PNN_CA_Markov tools	2020	Spatiotemporal L	U Huang, Z., D)u, H., L	i <u>https://www.m</u>	<u>nc</u> Y	Statistical models	BPNN_CA_Mar	rl L	Land use and land cover ch	Land-use data 2004, 2	2008 demands of each land-use ty	pe Anji County in China	AS	Huang, Z., Du, H., Li, X., Zhang, M., Mao, F.
CA-Markov	2014	Predicting Urban	L Nouri, J., Gl	naragoz	https://link.spr	<u>ir</u> N	Statistical models	CA-Markov	L	distribution of urban land	u land use maps of years 19	89- spatial distribution of urban	an Bandar Anzali in Iran	AS	Nouri, J., Gharagozlou, A., Arjmandi, R., Fa
CA-Markov	2020	Multi-scenario sin	m Zhou, L., Da	ng, X., S	S https://www.so	oi Y	Statistical models	CA-Markov	L	Land use and land cover ch	Land use Land use 2000, 2	201(to predict the land use map	or Shanghai in China	AS	Zhou, L., Dang, X., Sun, Q., & Wang, S. (202
CA-Markov	2021	Predicting land	C Gemitzi, A		https://www.ta	ar y	Statistical models	CA-Markov	R	Land use and land cover ch	n provided annually from	200 Future land cover projection	s i Greece	E	Gemitzi, A. (2021). Predicting land cover cl
CA-Markov - terrset18.31	2021	Land Use and L	a Mathewos	, M ; L	e <u>https://www.m</u>	nc Y	Statistical models	CA-Markov	L	Land use and land cover ch	Landsat TM for 1991, ETN	1+ f prediction LUCC for 2050	Matenchose Watershed	I, AF	Mathewos, M., Lencha, S. M., & Tsega
A-Markov and InVEST model	2019	Assessing the effe	ecZhao, M., H	e, Z., Di	https://www.so	<u>ci</u> Y	Statistical models	CA-Markov and	d L	Land use and land cover ch	The 16-day 1000 m MOD	S N LUCC between 2001 and 202	9 Heihe River IN cHINA	AS	Zhao, M., He, Z., Du, J., Chen, L., Lin, P., & F
CA-Markov and SWAT	2021	Future Runoff Var	ri Ji, G., Lai, Z.	, Xia, H.	, https://www.m	<u>nc</u> Y	Statistical models	CA-Markov and	d L	Future Runoff Variation an	c The land use data ,the mo	onth future period (2040–2060) a	ll s yellow river basin in Ch	i AS	Ji, G., Lai, Z., Xia, H., Liu, H., & Wang,
CA-Markov model module in t	2022	Comparison of m	u Lin, Z., & Pe	ng, S.	https://www.so	ci Y	Statistical models	CA-Markov and	d L	Land use and land cover ch	five high-resolution remo	te s Land use and land cover cha	ng∉Lake basin in China,	AS	Lin, Z., & Peng, S. (2022). Comparison of m
CA-Markov- terrset18.31	2023	Land use and cov	e Olipa Simor	n, James	https://link.spr	ir N	Statistical models	CA-Markov	L	Land use and land cover ch	satellite imagery from Lar	idsa prediction LUCC in 2030	Dar es Salaam metropo	IIAF	Simon, O., Lyimo, J., & Yamungu, N. (2
CA-Markov- terrset18.31	2018	Assessing tempor	ra Zheng, F., &	Hu, Y.	https://link.spr	<u>ir</u> Y	dynamic model	CLUE-S and Ma	ar R	simulating spatial tempora	l spatial temporal evolution	n of temporal-spatial land use sin	nul Beijing in China	AS	Zheng, F., & Hu, Y. (2018). Assessing tempo
Cellular automata (CA) and c	2019	A geographical di	r Firozjaei, M	. K., Sec	https://www.so	<u>ci</u> Y	Statistical models	Cellular autom	aL	Mapping development p	C Google Earth, 2013	The results are further comp	are Tainan City, Taiwan	AS	Firozjaei, M. K., Sedighi, A., Argany, M., Jel
CLUE-s and RUSLE tools	2017	Investigating effect	ci Zare, M., Na	azari Sa	r <u>https://link.spr</u>	ir N	dynamic and Statistical n	CLUE-s and RU	S R	Predicting soil erosion cha	n Three land use maps wer	e creto simulate land use for the	rea north of Iran	AS	Zare, M., Nazari Samani, A. A., Mohammad
DEMATEL tools and Markov m	2021	Urban ecological	s Ghosh, S., C	hatterje	https://www.so	<u>ci</u> Y	Statistical models	CA-Markov and	d L	Urban ecological security a	satellite data, Google Ear	th ir Changes and prediction of U	ES Kolkata Metropolitan A	AS	Ghosh, S., Chatterjee, N. D., & Dinda, S. (20
GEE and Markov module of I	2023	Evaluation and pr	re Yang, Z., Da	i, X., Lu	https://www.so	<u>ci</u> Y	Statistical models	CA-Markov	R	Land use and land cover ch	n sing supervised classificat	ion: Comparison between the rea	l L Yellow river basin in Chi	r AS	Yang, Z., Dai, X., Lu, H., Liu, C., Nie, R., Zhar
nVEST 3.10.2 software an	2022	Spatiotemporal E	v Zhong, C., E	iei, Y., G	https://www.m	nc Y	Statistical models	Cellular Autom	n L	The Spatiotemporal Distrib	the degree of the habitat	deg 2025 were predicted and an	aly: Wanhe Watershed in C	AS	Zhong, C., Bei, Y., Gu, H., & Zhang, P.
.CM is a module of IDRISI	2019	Assessment and p	pi Yadav, V., &	Ghosh,	https://www.ta	ar Y	Statistical models	LCM	L	urbanisation, LULC change	Landsat data (1981 - 2011	L) Land Use Land Cover (LULC)	20 Chennai district in india	AS	Yadav, V., & Ghosh, S. K. (2021). Assessmer
ogistic-CA-Markov and WI	2019	Dynamic simulati	o Guan, D., Zl	nao, Z.,	8 https://link.spr	ir N	Statistical models	logistic-CA-M	[¿L	simulate land use structure	e land use data in 2000, 20	05, ito simulate spatial pattern of	la Chongqing, China	AS	Guan, D., Zhao, Z., & Tan, J. (2019). D
UCC	2017	Trends in land use	e Kamwi, J. N	I., Kaets	https://link.spr	ir N	Statistical models	landuse change	e R	Land use and land cover ch	Landsat TM and ETM+ im	age fill this gap by analyzing the i	el: Zambezi Region, Namib	AF	Kamwi, J. M., Kaetsch, C., Graz, F. P., Chirw
Markov module and Logistic I	2018	Urban growth dyr	n Siddiqui, A.	Siddiq	https://www.so	<mark>i</mark> Y	Statistical models	Markov module	e L	Land use and land cover ch	landsat images for year 1	993 to simulate land use change	for Uttar Pradesh in India	AS	Siddiqui, A., Siddiqui, A., Maithani, S.,
arkov module of IDRISI	2020	Simulating spatial	I- Saadani, S	S., Laaj	٤ <u>https://link.spr</u>	ir N	Statistical models	CA-Markov	L	Land use and land cover ch	Land use/cover change (L	UCC urban growth modelling (20	10 El Jadida city, Moroco	AF	Saadani, S., Laajaj, R., Maanan, M., Rhinan
arkov module of IDRISI	2023	A CA-Markov-Bas	e Gasirabo, A	., Xi, C.,	https://www.m	nc Y	Statistical models	CA-Markov	L	Land use and land cover ch	evaluate the changes ir	LL predict future fluctuations	un Nyabarongo River Ba	s AF	Gasirabo, A., Xi, C., Hamad, B. R., & Edovia
arkov module of IDRISI	2023	Scenario-Based L	U Gebresellas	e, S. H.,	https://www.m	nc Y	Statistical models	CA-Markov	L	Land use and land cover ch	landsat data 1972 to 2017	to predict the land use map	or Upper Awash Basin (UA	EAF	Gebresellase, S. H., Wu, Z., Xu, H., & Muha
arkov module of IDRISI	2022	Analysis and mod	le Kisamba, F.	C., & Li,	, https://link.spr	ir N	Statistical models	CA-Markov	L	Land use and land cover ch	analyze LULC changes fro	m 2 simulate future changes for	the Dodoma urban district i	rAF	Kisamba, F. C., & Li, F. (2023). Analysi
arkov module of IDRISI	2023	Predicting land us	se Fogang, L	F., Tio	https://www.so	i Y	Statistical models	CA-Markov	L	Predicting land use/land co	Landsat images used	in Projected land use/land cove	r r West-Cameroon	AF	Fogang, L. F., Tiomo, I. F., Kamga, B. Y., Kpo
arkov module of IDRISI	2020	Analysing past lar	n Hishe, S., Be	ewket, \	https://www.ta	ar Y	Statistical models	CA-Markov	L	Land use and land cover ch	aerial photographs from 1	1935 to simulate from 2015 to 20	30. Middle Suluh Valley in E	AF	Hishe, S., Bewket, W., Nyssen, J., & Ly
arkov module of IDRISI	2023	Future land use la	ar Atef, I., Ahn	ned, W.,	https://link.spr	ii Y	Statistical models	CA-Markov	L	Land use and land cover ch	Landsat images obtained	200 Predicted LULC map for year	s 2 El-Fayoum Egypt	AF	Atef, I., Ahmed, W., & Abdel-Maguid, R. H.
arkov module of IDRISI	2022	Assessment of lar	Hind, M., N	/i'hamn	r <u>https://link.spr</u>	ir N	Statistical models	CA-Markov	L	Land use and land cover ch	n analyze a series of satellit	e in assess changes in each land	use Algiers, Algeria	AF	Hind, M., M'hammed, S., Djamal, A., & Zou
Markov module of IDRISI	2021	Analysis of the Fu	it Matlhodi, B	., Kenał	https://www.m	nc Y	Statistical models	CA-Markov	L	Land use and land cover ch	Classified Landsat images	froi to simulate the likely LULCs i	n 2 Gaborone dam catchme	AF	Matlhodi, B., Kenabatho, P. K., Parida, B. P.
Markov module of IDRISI	2021	Future Scenarios	o Beroho, M.,	Briak, I	https://www.m	nc Y	Statistical models	CA-Markov	L	Land use and land cover ch	Satellite images for the ye	ars to simulate LULC for years 2	028 Mediterranean Watersh	AF	Beroho, M., Briak, H., Cherif, E. K., Boulahf
Markov module of IDRISI	2023	Stochastic modeli	ir Megersa, W	l., Derib	https://www.ta	ar Y	Statistical models	CA-Markov	L	examine the process of ur	t The Landsat images of	19{to simulate Built-up area for	20 Mettu area in southwe	s AF	Megersa, W., Deribew, K. T., Abreha, G., Lic
			Weslati, O.,	Bouazi:	z										Weslati, O., Bouaziz, S., & Sarbeji, M. M. (2
Markov module of IDRISI	2022	Modelling and As	s		https://link.spr	<u>ir</u> N	Statistical models	CA-Markov	L	Land use and land cover ch	n Landsat images (ETM + ar	d O predict future LULC changes	Mellegue Catchment, N	I AF	
		Quantitatively As	si	_											
Markov module of IDRISI	2022		Daba, M. H.	, & You	, https://www.m	<u>nc</u> Y	Statistical models	CA-Markov	L	Land use and land cover ch	n landsat data 1984- 2019	Future land use simulated in	20 Awash River in Ethiopia	AF	Daba, M. H., & You, S. (2022). Quantitative
Markov module of IDRISI	2022	Analysis of land u Predicting future	ıs Mwabumba c	a, M., Ya	https://www.so	<u>ci</u> Y	Statistical models	CA-Markov	L	Land use and land cover ch	LULC maps for the years	199 projected for 2025 and 2035	un Ngorongoro Conservatio	D AF	Mwabumba, M., Yadav, B. K., Rwiza, M. J.,
Markov module of IDRISI	2023		Lopes, N. D	. R., Li, 1	https://www.so	<u>ci</u> Y	Statistical models	CA-Markov	L	Land use and land cover ch	n landsat images 2000–202	0 ar The projected coastal LULC t	nat Guinea-Bissau's	AF	Lopes, N. D. R., Li, T., Zhang, P., Matomela,
Markov module of IDRISI	2018	Deriving suitabilit	ty Fu, X., Wan	g, X., &	https://www.so	<u>ci</u> Y	Statistical models	CA-Markov	L	Land use and land cover ch	n Land cover data in two pe	rioc Simulation of land use for 20	11 Ohio in the United State	AMN	Fu, X., Wang, X., & Yang, Y. J. (2018).
Markov module of IDRISI	2021	Future scenarios	b da Cunha, E	. R., Sar	https://www.so	<u>ci</u> Y	Statistical models	CA-Markov	L	Land use and land cover ch	GeoEye, RapidEye and La	nds cenarios of LULC based on th	e (Serra da Bodoquena re	e AMS	da Cunha, E. R., Santos, C. A. G., da Silva, R
Markov module of IDRISI	2014	Assessing spa	t Puertas, O.	L., Henr	https://www.so	oi Y	Statistical models	CA-Markov	L	Land use and land cover ch	LUC data from 1975 to 20	10, Future land use simulated in	20 Santiago Chile	AMS	Puertas, O. L., Henríquez, C., & Meza, F. J. (
arkov module of IDRISI	2022	Occurrence Predi	c Liu, D., & Z	ang, X.	https://www.m	<u>ne</u> Y	Statistical models	CA-Markov	L	Prediction of Pine Wilt Dis	e factors, such as weather,	terr PWD in 2030 is predicted ba	sec Anhui is located in Ea	s AS	Liu, D., & Zhang, X. (2022). Occurrenc
arkov module of IDRISI	2018	MCR-Modified CA	A-Li, X., Wang	, M., Liu	https://www.m	ne Y	Statistical models	CA-Markov	L	simulation of urban expa	al land use change 1996 to 2	200(The expansion of the Wuhan	m Wuhan metropolitan a	AS	Li, X., Wang, M., Liu, X., Chen, Z., Wei, X., 8
arkov module of IDRISI	2022	CA-Markov mode	l Mokarram,	M., & P	https://www.so	ci Y	Statistical models	CA-Markov	R	predict crop yield using r	land use data in 2000, 20	10, predict yield of two crops in	204 southern Iran	AS	Mokarram, M., & Pham, T. M. (2022). (

+ = CA models • forest • wetlands • croplands • SECLAND model • LCM models • CLUE-S model • Agent based M • inVEST model • GEOMOD model • Integrated Assessment M • System dynamics M • ML models • EUROPE •

Cards of modelling tools

Author/Institution

- Purpose/Target group
- **Tool description**
- Used method, Approach, Scheme ٠
- Used/required data (data format) .
- Scenarios, results/outputs ٠
- Hardware requirements
- Knowledge requirements
- List of articles using the tool connection to the ٠ Database of modelling tools - applications

Card of the Tool for the modelling of land use/land cover change (prediction) Modelling tool title: CLUE-S

Authors/Institution: Wageningen University for GUI and Aristotle University for R package

Version/year: 2009/2023

Available extensions for the tool:

There are two environments for the CLUE-S model: one in R programming (Kiziridis et al, 2023) and the other in terms of a GUI (Verburg et al, 2009). We have generated a table (1) and included an access link.

Table (1): this table provides some links that give useful information about the CLUE-S environment model.

Some accessible links	Graphic User Interface	R programming
Link -download:	LINK	LINK
Link – information:	LINK	not
Link – installation:	LINK	not
Link – tutorial:	LINK	not
Link- help:	LINK	not

	modelling of land use/land co	wer change (predi
Modelling tool title: CLU	E- S	
Authors/Institution: Wagening	in University for GUI and Aristotle U	niversity for it package
Version/year: 2009/2023		
Auxilable extensions for the to	e:	
the other in terres of a GUI [Vor access link.	burg at al, 2006). We have generated	a table [1] and included
Table (1) this table provides so model.	ne links that give useful information :	about the CLUE-5 enviro
Table (2) this table provides so model. Some accessible links	Graphic Over Interface	about the CLUE -5 enviro
Table (1): this table provides so model. Some accessible links Link-download:	Seaphic User Interface	About the CLUE & enviro R programming LINK
Table (2) this table provides an model. Some accessible links Link -download: Link - information:	Graphic User Interface	About the CLUE 5 enviro R programming LIVE 446
Table (2) this table provides so model. Some accessible links Link-download: Link - information : Link - installation:	Graphic Gear interface Graphic Gear interface UNIC UNIC UNIC UNIC	Rangramming Liver Alf Alf
Table (2) this table provides an model. Some accessible links Link - descripted: Link - information: Link - installation: Link - installation:	ne links that give useful information . Graphic Over Interface Links Links Links Links	R programming R programming and and and and

tanal and human-driven, across various scales. By mapping out potential land use scenarios, if

specific land use oplicies

Jand/required data (different types - land cover, notial, economic etc.

Lasfunctions: allocations

Sublime Test

Success stories for modelling tools

Based on selected open source publication

- Title/Author/Institution/Journal
- Year, DOI/Link
- Abstract/Goals of the study
- Study area, data, methods
- Modelling scheme/diagram
- Results, Mentioned problems
- Applications and recommendation for future use
- Outputs from project case studies will also be used

Success story on the Tool for the modelling of land use/land cover change (prediction)

Modelling tool title: CLUE-S

 Introduction based on selected publication/s – <u>Jitile</u>, authors, DOI/link, short summary/presentation of the paper (abstract)

Title: Assessing the Potential Future Forest-Cover Change in Romania, Predicted Using a Scenario-Based Modelling

Authrs: Gheorghe Kucsicsa, Elena-Ana Popovici, Dan Bätteanu, Monica Dumitrascu, Ines Grigorescu & Bianca Mitrică,

Institute: Institute of Geography, Romanian Academy, 12 Dimittie Racovită Street, sect. 2, 023993, Bucharest, Romania

Journal: Environmental Modeling & Assessment Publisher: Springer Impact factor: 2.4

Year: 2019

Abstract:

Forest-cover dynamics is of wide concern due to its role in climate change, biodiversity losses, water balance and land degradation, as well as social and economic development. Hence, exploring land-use/cover dynamic is important in order to improve our understanding of the

Venables

Temperature (1961-2015)

DOMINK: https://www.tandfoniine.com/doi/tuli/10.1080/15481003.2024.23022

whart of the modeling procedure used to assess future potential LUC

CHARLES UNIVERSITY Faculty of Science

acciaci, C., Gigante, D., Mutanga, O., Bopatopi, S., & Vezasi, M. (2024). Land cove

- Mainly based on remote sensing resources (Copernicus layers) and national resources
- Database sorted to:
 - a) General LU/LC layers for Europe/Word
 - b) Thematic LU/LC layers (forests, croplands, urban, others)
 - c) Country data for each partner country contributions from project partner will be requested soon (links for the sources, CU will fill in the database based on the inputs/links from partners)
- Information stored for each layer
 - Provider
 - Layer name
 - Temporal resolution
 - Source of data
 - Data processing
 - Data format
 - Download/visualization link
 - Pixel size
 - Accuracy
 - Area
 - Accessibility
 - Legend/Number of categories
- Integrated Administration and

Control System IACS – harmonization WP2

Database of existing LU/LC layers in the EU

Europe

LAND

provider	layer name	one time/series	timespan	source data	data processing	data format	download link	visualisation link	pixel size/geome	thematic accura	area	accesibility n	umber of	legend
Copernicus program	Corine Land Cover	one time	1986-1998	Landsat-5 MSS/TM	classification	raster - geotif/v	https://land.coperr	https://land.copernicu	100 m	≥ 85 % (probabl	27 participat	free downloa	41	https://www.eea.eurc
Copernicus program	Corine Land Cover	one time	2000 +- 1 yea	Landsat-7 ETM, sir	classification	raster - geotif/v	https://land.coperr	https://land.copernicu	100 m	≥ 85 % (achieve	39 participat	free downloa	41	https://www.eea.euro
Copernicus program	Corine Land Cover	one time	2006 +- 1 yea	SPOT-4/5 and IRS	l classification	raster - geotif/v	https://land.coperr	https://land.copernicu	100 m	≥ 85 %	39 participat	free downloa	41	https://www.eea.euro
Copernicus program	Corine Land Cover	one time	2011-2012	IRS P6 LISS III and	classification	raster - geotif/v	https://land.coperr	https://land.copernicu	100 m	≥ 85 % (probabl	39 participat	free downloa	41	https://copernicus.di
Copernicus program	Corine Land Cover	one time	2017-2018	Sentinel-2 and Lan	classification	raster - geotif/v	https://land.coperr	https://land.copernicu	100 m	≥ 85 %	39 participat	free downloa	41	https://image.discom
Copernicus program	Dynamic Land Cover	one time	2015	Proba-V Satellite	classification	raster - geotif/v	https://land.coperr	https://land.copernicu	100 m	≥ 80 %	global	free downloa	23	https://land.copernic
Copernicus program	Dynamic Land Cover	one time	2016	Proba-V Satellite	classification	raster - geotif/v	https://land.coperr	https://land.copernicu	100 m	≥ 80 %	global	free downloa	23	https://land.copernic
Copernicus program	Dynamic Land Cover	one time	2017	Proba-V Satellite	classification	raster - geotif/v	https://land.coperr	https://land.copernicu	100 m	≥ 80 %	global	free downloa	23	https://land.copernic
Copernicus program	Dynamic Land Cover	one time	2018	Proba-V Satellite	classification	raster - geotif/v	https://land.coperr	https://land.copernicu	100 m	≥ 80 %	global	free downloa	23	https://land.copernic
Copernicus program	Dynamic Land Cover	one time	2019	Proba-V Satellite	classification	raster - geotif/v	https://land.coperr	https://land.copernicu	100 m	≥ 80 %	global	free downloa	23	https://land.copernic
EUROSTAT	LUCAS	one time	2006	survey - primary da	survey - primary	points with coo	https://ec.europa.e	-	2 km	-	EU countries	free downloa	7	https://ec.europa http
EUROSTAT	LUCAS	one time	2009	survey - primary da	survey - primary	points with coo	https://ec.europa.e	-	2 km	-	EU countries	free downloa	7	https://ec.europahttp
EUROSTAT	LUCAS	one time	2012	survey - primary da	survey - primary	points with coo	https://ec.europa.e	-	2 km	-	EU countries	free downloa	7	https://ec.europa http
EUROSTAT	LUCAS	one time	2015	survey - primary da	survey - primary	points with coo	https://ec.europa.e	-	2 km	-	EU countries	free downloa	7	https://ec.europa http
EUROSTAT	LUCAS	one time	2018	survey - primary da	survey - primary	points with coo	https://ec.europa.e	https://ec.europa.eu/	2 km	-	EU countries	free downloa	7	https://ec.europahttp
EUROSTAT	LUCAS	one time	2018	survey - primary da	survey - primary	points with coo	https://ec.europa.e	-	2 km	-	EU countries	free downloa	7	https://ec.europa http
ESA, article doi:10.3	Sentinel-2 global land	one time	2017	Sentinel-2, CLC for	classification	WMS/Geotif	https://s2glc.cbk.w	https://browser.creod	10 m	86 % https://s2g	Europe with	free downloa	13	https://s2glc.cbk.wav
ESA Climate Chang	CCI Land Cover	series	yearly 1992-2	satellite data, Land	classification	tif and other	http://maps.elie.uc	-	300 m	≥ 71 %	global	free downloa	38	https://maps.elie.ucl.
NASA	MODIS/Terra+Aqua L	series	yearly 2001-2	MODIS Terra and A	classification	tif and other	https://earthexplor	https://earthexplorer.	500 m	74 %	global	free downloa	17	https://svs.gsfc.nasa
article https://doi.org	Dynamic world	series	very often 19	Sentinel-2	deep learning c	lassification	https://developers.	https://dynamicworld	10 m	≥ 75 %	global	available at (?		
PhD project from Wa	Hilda (HIstoric Land D	series	every decade	unknown	unknown	ArcGIS map pa	https://www.wur.nl	http://www.geo-inform	1 km	unknown	EU countries	free downloa	6	namely:Settleme also
RIVM (The National	Pelcom - Pan-Europe	one time	1990s	MARS (Monitoring	classification	ESRI-grid, ERI	http://www.geo-inf	http://www.geo-inform	1 km	lower than 70 %	Europe + Tu	free downloa	15	http://www.geo-inform
UMD	UMD Land Cover	one time	1992/93	UMD GLAD Landsa	decision tree cla	tif	https://storage.goo	https://glad.eartheng	1 km	Expected to be	global	free downloa	14	see visualisation at
USGS	GLCC 2.0 Global	one time	1992/93	1-km AVHRR 10-da	classification	tif and other	https://earthexplor	https://earthexplorer.	1 km	82 %	global	free downloa	17	
Joint Research Cent	GLC 2000	one time	1999/2000	SPOT-4-VGT	classification	tif	https://www.eea.er	https://www.eea.euro	1 km	82 %	global	free downloa	23	https://www.eea.eurc
Internatinal Water M	GMRCA LULC	one time	2000	AVHRR, SPOT	classification	tif	http://waterdata.iw	http://waterdata.iwmi	10 km	unknown	global	free downloa	10	http://waterdata.iwmi
Geo-Wiki	Geo-Wiki Hybrid globa	two maps	2000/2005	1 km MODIS data	classification	text	https://iiasa.ac.at/r	https://iiasa.ac.at/mo	300 m	Expected to be	global	free downloa	10	https://iiasa.ac.at/mc
FAO (Food and Agri	LADA LUC map	one time	2007	interpretation of LU	interpretation ar	tif	https://data.apps.f	https://storage.google	5 arc minutes	unknown	global	free downloa	40	https://storage.googl
FAO (Food and Agri	GLC-SHARE	one time	2014 and bef	combination of "bes	interpretation ar	tif	https://data.apps.f	https://storage.google	30 arc seconds	Expected to be	global	free downloa	11	https://data.apps.fao
OSM	OSM Landuse/Landco	one time	hard to tell	OSM, Sentinel-2, L	classification	.tiff	https://data.osmlar	https://osmlanduse.o	rg/#8.833346399	831107/7.90058	global	on request to	14	https://maps.heigit.o
Tsinghua University	GLASS-GLC	series	annual 1982-	GLASS satellite Cli	r classification an	ı tif	https://doi.pangae	https://www.research	5 km	85 %	global	free downloa	8	https://www.research
National Science Fo	GLC30	three maps	2000,2010,20	GLAD Landsat Ana	object based cla	tif	https://storage.goo	gleapis.com/earthen	30 m	Expected to be	global	free downloa	10	https://data.apps.fao
Tsinghua University	GLC250	two maps	2001, 2010	slope, latitude, MOI	random forest c	tif	https://data-starclo	ud.pcl.ac.cn/resource	250 m	Expected to be	global	free downloa	25	
International Steerin	GLCNMO	three maps	2003, 2008, 2	MODIS data	classification	tif	https://globalmaps	https://globalmaps.gi	1 km(2003), 500	Expected to be	global	free downloa	20	https://globalmaps.g
ESA in cooperation	GlobCover	two maps	2005,2009	MERIS satellite dat	classification (co	c tif	http://due.esrin.esa	a.int/page_globcover.	300 m	Expected to be	global	free downloa	23	https://www.esa.int/E
Tsinghua University	FROM-GLC	three maps	2010,2015,20	Landsat or Sentine	different classifi	(tif	should be available	e from https://data-sta	30 m, 250 m, 50	Expected to be	global	free downloa	8	
Geo-harmonizer pro	Annual Land Cover P	series	2000-2019	CLC, Lucas to train	machine learnin	tif	https://ecodatacub	https://ecodatacube.e	30 m	unknown	Europe	free downloa	33	
ESA	GlobCorrine	two maps	2005,2009	CLC, GlobCover, N	same as GlobC	tif	https://maps.elie.u	https://maps.elie.ucl.	300 m	>49 % or >79 %	Europe	free downloa	17	https://maps.elie.ucl.

LUCC Database Czechia – an example of unique European Land Use Change dataset

- Based on the records of Stable cadaster (and later cadastral data)
- Years 1845, 1868, 1948, 1990, 2000, 2010, 2020
- Temporal consistency (cadasters merged in case when change of total area exceeded 2%)
- Categories arable land, permanent grasslands, permanent cultures, forest areas, built-up areas, water areas, remaining areas
- Evaluation of temporal changes indexes, trends major processes of landscape change

Kupková, L.; Bičík, I.; Jeleček, L. At the Crossroads of European Landscape Changes: Major Processes of Landscape Change in Czechia since the Middle of the 19th Century and Their Driving Forces. *Land* **2021**, *10*, 34. https://doi.org/10.3390/land10010034

LUCC Database Czechia – an example of unique European Land Use Change dataset

- Two spatial levels cadasters (stable territorial units) + parcel level
- Driving forces evaluation
- Will be used for modeling within Europe LAND project

Une	derlying and proxim	ate driving forces of	oflands	cape chang	e 1990-201	0	Change of land use classe	es 1990-2010 (in percentage points)
Main	hanges of land use classes						1	
 » Strik » First » Built 	ing decrease of arable land continued; period of permanent grasslands increase t-up areas also expanded.	(rather significant);					3	
Newf	unctions							
 » Arou subi » Area » "Net » Seco » Area town 	and major urban centres, agricultural land urbanization processes. Residential project designated for special use originated on wwilderness [®] emerged on abandoned agri and housing kept being popular which furt s along the former "iron curtain" became is and villages close to the border evolved	(including high-quality one) was often ts and commercial centres came to exis former agricultural land (golf courses, ricultural land; ther strengthened depopulation of rura freely accessible, now popular among t i into "places of encounter" between no	changed to urba stence; outdoor centres I areas by permi tourists, bikers, i atives and foreig	anized area as part of , cycle paths, recreation: anent residents; and mushroom gatheren: n visitors.	al facilities); s. Many		-1 -3 -5 -7 -9 -9 arable permanent permane	nt forest water built-up remaining 5s areas areas areas
	Urban and infrastructure development	Agricultural expansion and intensification	Expansion	and intensification of forestry	Extraction of non resource	renewable s	Land abandonment and extensification	Nature and heritage conservation activities
PROXIMATE DRIVERS	 Mass housing projects were not started any more, more focus part on individual housing instead. Big boom of suburban development, Wanchouses, logistic centres, and also industrial areas muchroomed around major utuban centres and along highways. Construction (reconstruction) of major transport lines; Brownfields swere being developed in clites. In the countryside, agrobrownfields lungshy anahed or were used for non agricultural archites; Large environment-friendly investimets were implemented (desulphuritation devices, sweage treatmore plants); Land reclamation schemes is mining areas were realed. 	 Agricultural production increased only in exceptional cases in foreounable agriculturatic conditions; Subbidies enabled on unrusual expansion of rapeseed; the spectrum of crops, however, became limited. More intensive farming methods led to dominance of wheat, rapeseed, and forage crops. 	 Subsidies fo agricultural Afforestation in areas whether badly damag Communism Ecological six areas where cultivated (c no interest in 	 attornstation (on former and phearne available; vosa also wirdsgread the formet and been grid by acidic rains under k; concession took place in specification al and was not contested property rights, farming); 	 Open pit lighte mining was significantly reduced (from ca. 160 mit. tors annually in 366s down to ca. 30 mit. tors). Some open port of a significant of the seek another jobs. 		 Anable land kept shoring, mead- and pastrese expanded. Abandon agricultural land became more common (due to properly restlut) lack of interest in farming, and ne fragmented land teruary; A nimal husbandry became less intensive - Interock moved from shoets to pastures, expecially in an with less doward climate on high grounds. 	Yee New National Preks were established Hody, (seld System), Summa), Commercial activities (including Commercial activities (including Yee Yee New New Yee Protected areas came to existence, too (Broumovsko, Poodfi); Prode UHSESC World Heritage Sites in the Cach Republic (all became part of the Isin ce 1935) booted fourism; New low for environmental and nature protection.
		^ ^ ^ 	1		11	е С	^^	
	Political and institutional	Economic		Social an	d cultural		Technological	Natural and spatial
UNDERLYING DRIVERS	Collapse of Communist regimes in Central/ Eastern Europe, end of Soviet dominance; Accession to N400 USPN - Communists including fund and Competition contrives; Multi-polar world system emerged. Increased foreign investments.			Coscalled Crechoslovakia disintegrated into the Czech Bepublic and Slovakia; Slovakia; Slovakia; Communication vasi angely replaced by English, globa; slovand Went; Slovand			on of market prices created necessity ogical innovations (in industry and); itural technologies were introduced applied on leaves, silger and hay s on fields), livestock largely moved to pastures, animal husbandry d introduction of new species (goats, f; in technologies were applied on a	 Land abandonment; System of agricultural subsidies was changed -more support for non-productive landscape functions; A number of military areas casasd to exist, civilian use reintroduced.

Thank you for your attention!

lucie.kupkova@natur.cuni.cz

